EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
= [ ] ω , , / T] c [ [x,t] ] =
Radiância é uma medida radiométrica usada para descrever a quantidade de radiação eletromagnética que passa por ou é emitida em uma área em particular de um corpo. A Unidade Internacional utilizada para medir a radiância é watt por esferorradiano por metro quadrado (W·sr−1·m−2).[1] /
= [ ] ω , , / T] c [ [x,t] ] =Definição
A radiância espectral é definida de forma que o produto /
= [ ] ω , , / T] c [ [x,t] ] =
seja a energia emitida por unidade de tempo da radiação em freqü
A Regra de Born (também chamada de Lei de Born) é uma lei da física da mecânica quântica que nos dá a probabilidade que uma medição irá produzir um resultado num sistema quântico. Esta regra foi nomeada em homenagem do físico alemão Max Born.
A regra de Born é um dos princípios mais importantes da interpretação de Copenhaga da mecânica quântica. Houve muitas tentativas de obter esta regra a partir dos fundamentos da mecânica quântica, mas ainda não há resultados conclusivos.[1]
Definição
A regra de Born diz que se um observável corresponde a um operador adjunto com espectro discreto ele será medido num sistema com função de onda normalizada (veja Notação Bra-ket), então:
- O resultado da medição será um dos valores próprios de
- A probabilidade da medição de um valor próprio será dada por , onde é a projeção no espaço de correspondente à .
No caso onde o espectro de não é completamente discreto, o teorema espectral mostra a existência de uma certa medida espectral , que será a medida espectral de . Neste caso a probabilidade de resultado que a medição retornará se encontra num conjunto e será dada por .
- /
- = [ ] ω , , / T] c [ [x,t] ] =
História
A regra de Born foi formulada num artigo de 1926.[2] Neste artigo, Born soluciona a equação de Schrödinger para um problema de dispersão e conclui que a regra de Born dá a única interpretação possível da solução. Em 1954, junto com Walther Bothe, Born foi agraciado com o Nobel de Física por este trabalho.[3] Mais tarde o matemático John von Neumann demonstrou aplicações da teoria espectral para a regra de Born em seu livro de 1932.[4]
Em física quântica, a regra de ouro de Fermi expressa a taxa de transição (probabilidade por unidade de tempo) de um auto-estado de um Hamiltoniano para um contínuo de estados, devido a uma perturbação , que pode depender do tempo. Seu nome é uma homenagem ao físico italiano Enrico Fermi.
Dado um auto-estado do Hamiltoniano não perturbado , a probabilidade de transição para um estado é dado em primeira ordem de teoria de perturbação por
- /
- = [ ] ω , , / T] c [ [x,t] ] =
sendo a densidade de estados finais.
A renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização foi posteriormente considerada uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]
Renormalização em EDQ
- /
Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:
Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[8]
Comentários
Postar um comentário